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Abstract. We consider that two orientations of a regular matroid are equivalent if one can be
obtained from the other by successive reorientations of positive circuits and/or positive cocir-
cuits. We study the inductive deletion-contraction structure of these equivalence classes in the
set of orientations, and we enumerate these classes as evaluations of the Tutte polynomial. This
generalizes the results in digraphs from a previous paper.
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1. Introduction

Three equivalence classes can be defined on reorientations of an oriented matroid. The
first allows successive reorientations of positive circuits from a reorientation to another,
the second allows successive reorientations of positive cocircuits, and the third allows
successive reorientations of both positive circuits and positive cocircuits. The first and
the second one are dual to each other, and the third is self-dual.

These equivalence relations can be thought of as dynamical systems, where the
states or configurations are the reorientations of the oriented matroid, and the evolution
rule is given by reorientations with respect to allowable subsets. For this reason, and by
analogy with [5], we call the three equivalence relations circuit, cocircuit, and circuit-
cocircuit reversing systems, respectively. We point out that these systems extend the
level zero of the chip firing game or sandpile model to oriented matroids. See [5] for
further background.

For oriented matroids of directed graphs, we showed in [5] that the number of equiv-
alence classes for these relations are evaluations of the Tutte polynomial. In this paper,
we extend these enumerative results to regular matroids (see Theorem 3.10). We note
that these results do not generalize to any oriented matroid (see Proposition 3.2).

Since the class of regular matroids is not much larger than the class of graphic and
cographic matroids, we might mention that the extension is interesting because of the
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method used. For example, in [5], we use that acyclic orientations with unique given
sink of a graph are in natural bijection with cocircuit reversing acyclic classes, and thus
their number is the evaluation of the Tutte polynomial at (1, 0) by a classical result [8].
But this result cannot be used in matroids, where we have to avoid the use of vertices.
More specifically, in [5], we use degree sequences, whereas in the present paper we use
matroid methods, namely, deletion and contraction, duality decompositions for reori-
entations and the Tutte polynomial, and the fact that regular matroids are binary and
orientable.

2. Preliminaries

The reader is referred to [1] for necessary background on oriented matroids, to [12] on
regular matroids, and to [2] on the Tutte polynomial.

Let M be an oriented matroid on E. The oriented matroid obtained by reorientation
of M with respect to a subset A ⊆ E is denoted by −AM. We may also note −AC for a
signed subset C in which signs are changed for elements of A. Beware that throughout
the paper, reorientations are considered at two levels: (1) the set of all possible reori-
entations of the fixed oriented matroid M, and (2) some reorientations with respect to
subsets of E that transform a reorientation of M into another one. Precisely, we call
reorientation of M any subset A ⊆ E, and we consider that a reorientation A of M is
associated with −AM. Then, the reorientation of the reorientation A ⊆ E with respect
to C ⊆ E is the reorientation A4C. Reorientations of M correspond to signatures of
the arrangement associated with M (or to orientations of a graph representing M if it
is graphic). This is done to preserve a number of reorientations equal to 2|E|, similarly
with graphs, even if the oriented matroids −AM and −E\AM are in fact equal. Ter-
minology of oriented matroids is naturally induced on reorientations, for example, a
reorientation A of M is called acyclic if −AM is acyclic. As usual, the acyclic reorien-
tations are in canonical bijection with the regions of an arrangement representing the
oriented matroid, and thus we may sometimes use geometrical vocabulary.

For an oriented matroid M, the cyclic part F of M is the union of positive circuits
of M. Then E \F is the union of positive cocircuits, called the acyclic part of M,
and then M/F is acyclic and M(F) is totally cyclic. This fundamental property for
oriented matroid is well-known, in graph theory (Minty Lemma, see [11]) and in linear
programming (Farkás Lemma, see [1]). Structurally, it can be seen as a decomposition
of the set of reorientations of M into the following disjoint union:

2E =
⊎

F cyclic flat of M

{

A′]A′′ | A′ ⊆ F,−A′M(F) totally cyclic,

A′′ ⊆ E \F,−A′′M/F acyclic
}

,

where a cyclic flat of M is both a union of circuits and the complementary of a union of
cocircuits. See also [6, 7] for refinements of such decompositions.

The Tutte polynomial of the matroid M is denoted t(M; x, y). Among its several
equivalent definitions, we will use in proofs its famous inductive one [2, 14]. A useful
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numerical extension of the previous duality decomposition is the following formula
for the Tutte polynomial. It is implicit in [4] through an explicit bijection, and called
“convolution formula” in [9] (see also [3, 7] for extensions) that

t(M; x, y) = ∑
F cyclic flat of M

t(M/F ; x, 0) t(M(F); 0, y).

It is known that the number of acyclic reorientations of M is t(M; 2, 0) [8,10,13,15].
Dually, the number of totally cyclic reorientations is t(M; 0, 2). The reader may check
with the previous decomposition and the above formula that the number of reorienta-
tions of M is effectively t(M; 2, 2) = 2|E|.

The class of regular matroids contains graphs and is self-dual. One might think
of it as the smallest class having both this property and nice constructions. Among
several equivalent definitions, regular matroids are binary orientable matroids. Binary
matroids (representable over the binary field) are characterized by the fact that U2,4 is
an excluded minor. In particular, this implies that two cocircuits are modular if and
only if their symmetric difference is a cocircuit. Binary matroids are also characterized
by the property that a symmetric difference of a set of cocircuits is a disjoint union
of cocircuits. We will mainly use these two last properties, together with the oriented
matroid structure.

The cocircuit graph of an oriented matroid M is the graph of which vertices are
positive cocircuits of M and edges are pairs of modular cocircuits. This cocircuit graph
is connected, and moreover, the subgraph of the cocircuit graph of M formed by cocir-
cuits containing an element e is also connected. In the realizable case, for instance, the
cocircuit graph is the skeleton of a polytope and the set of cocircuits not containing e is
the set of vertices of a complementary of a face in this polytope.

Finally, except when it is ambiguous, we use the same notation for a cocircuit of M
(signed subset) and the corresponding cocircuit (subset) in the underlying matroid.

3. Main Section

We define the circuit reversing system, the cocircuit reversing system, and the circuit-
cocircuit reversing system of an oriented matroid M, by analogy with the terminology
used in [5], as equivalence relations on the set of reorientations of M. If C is, respec-
tively, a positive circuit, a positive cocircuit, or a positive circuit or cocircuit, of −AM,
then the reorientation C4A, obtained by reorientation of A with respect to C, is said to
be equivalent with the reorientation A. In each case, the transitive closure of the relation
is an equivalence relation on the set of reorientations. When two reorientations A and B
are equivalent for the circuit-cocircuit reversing system of M, we denote A ≡M B.

Note that the circuit reversing system of M is isomorphic to the cocircuit reversing
system of M∗, and then the circuit-cocircuit reversing system of M and M∗ are isomor-
phic. Geometrically, the reorientation of a region with respect to a positive cocircuit
comes to cross a 0-dimensional face of the region and take the opposite region. Note
that two complementary reorientations, corresponding to two opposite regions in the
acyclic case, are not necessarily in the same class, even if the associated oriented ma-
troids are the same. Note also that the partitions of the set of reorientations of M into
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classes are invariant under reorientation of M with respect to A ⊆ E, up to symmet-
ric difference with A. At last, observe that reorienting successively some circuits or
cocircuits is the same as reorienting at one time their symmetric difference.

Proposition 3.1. Let M be an oriented matroid on E, and A, B ⊆ E. If A ≡M B then
−AM and −BM have the same cyclic part F.

Proof. Let B = A4C where C is a positive circuit of −AM and let F be the cyclic part of
−AM. By definition of F , we have C ⊆ F , and there exists a positive maximal vector of
−AM of which support is F . It is generated by conformal composition of some positive
circuits C1, . . . , Ck. Then the signed subset (−C) ◦C1 ◦ · · · ◦Ck = (−C) ◦−CC1 ◦ · · · ◦
−CCk is a maximal positive vector of −C4AM. Hence A and B have the same cyclic
part. The result is immediately deduced by duality and transitivity.

From Proposition 3.1, we get that A ≡M B if and only if A∩F ≡M(F) B∩F and
A\F ≡M/F B\F for some F with −AM(F) totally cyclic and −AM/F acyclic. In other
words, using the duality decomposition of the set of reorientations, the circuit-cocircuit
reversing system of M can be completely studied through the circuit reversing systems
of totally cyclic reorientations of the minors M(F) and the cocircuit reversing systems
of acyclic reorientations of the minors M/F , for all cyclic flats F .

We shall call equivalence classes for acyclic reorientations the equivalence classes
for the cocircuit or equally for the circuit-cocircuit reversing system for these reori-
entations. All results on these reorientations can easily be translated to totally cyclic
reorientations by duality. Except in the final theorem, we consider in the sequel only
acyclic reorientations

Proposition 3.2. A uniform oriented matroid U2,2k (U2,2k+1, respectively) has exactly
one (two, respectively) equivalence classes of acyclic reorientations, for any k > 0.

Figure 1 illustrates Proposition 3.2 for k = 2. In each case, a class is built by suc-
cessive reorientations with respect to cocircuits represented with arrows. The proof of
this proposition is left as an easy exercise. It shows that the enumerative results of [5],
or of the final theorem, do not extend to general oriented matroids.

We now focus on regular acyclic oriented matroids. We describe essentially the
relations between the classes in M, M \ e, and M/e (notably in order to prove the first
assertion in the last enumerative theorem by means of the inductive definition of the
Tutte polynomial).

We say that an oriented matroid M on E is bordered by e ∈ E if both M and −eM
are acyclic. Equivalently, M/e is acyclic. Geometrically, e is a frontier separating the
regions M and −eM. Observe that if M is bordered by e and C is a positive cocircuit of
M with e 6∈ M, then C is a cocircuit of M/e, −CM/e is acyclic, /0 ≡M C and /0 ≡M/e C.

Let there be a regular oriented matroid M on E, and let e ∈ E which is neither
isthmus nor loop.

Lemma 3.3. If M is bordered by e then /0 6≡M e.

Proof. If /0 and e are in the same acyclic class then e is a symmetric difference of
cocircuits. Hence e is a disjoint union of cocircuits, since M is binary. Hence e is a
cocircuit, and so e is an isthmus.
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Figure 1: Acyclic classes of U2,2k and U2,2k+1.

Lemma 3.4. If C is a positive cocircuit of M then /0 ≡M\e C \ e.

Proof. If e∈C then C\e is a positive cocircuit of M\e, and /0≡M\e C\e by definition of
equivalence classes. Assume now e 6∈C. If C is a cocircuit of M\e, then again /0≡M\e C.
If C is not a cocircuit of M \ e, then C is obtained in M by modular elimination of e
between D and D ′, with C = D4D ′ and D∩D ′ = {e} since M is binary. Hence D\ e
and D ′ \e are disjoint positive cocircuits of M \e. So /0 ≡M\e (D\e)4(D ′ \e) ≡M\e C.

Lemma 3.5. If M is bordered by e, C is a positive cocircuit of M with e ∈C, and −CM
is not bordered by e, then for every positive cocircuit D of −CM containing e, we have
−D4CM bordered by e and /0 ≡M/e D4C.

Proof. In M, D is positive on D \C and negative on D∩C. If C and D are modular,
then C4D is a positive cocircuit of M not containing e, hence /0 ≡M D4C, and it is a
positive cocircuit of M/e, then /0 ≡M/e D4C, and of course −D4CM/e is acyclic. The
subgraph of the cocircuit graph of −CM formed by cocircuits containing e is connected.
Hence, by connectivity of this subgraph and by transitivity of the equivalence relation,
we get /0 ≡M/e D4C for every positive cocircuit D of −CM containing e.

Lemma 3.6. If M is bordered by e, C is a positive cocircuit of M with e ∈C, and −CM
is bordered by e then for every A ⊆ E \e with /0 ≡M/e A and for every positive cocircuit
D of −AM with e ∈ D, we have −D −A M bordered by e and C \ e ≡M/e A4(D\ e).

Proof. First we prove the result for A = /0. Observe that −CM is bordered by e implies
−C\eM/e is acyclic. Let D be a positive cocircuit of M with e ∈ D modular with C.
Then C4D is a positive cocircuit of both −CM and −DM not containing e. Since
−C4eM is acyclic, we also have −D4eM acyclic. And C4D is a positive cocircuit of
both −C\eM/e and −D\eM/e. So C \e ≡M/e D\e. The subgraph of the cocircuit graph
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of M formed by cocircuits containing e is connected. Hence for every positive cocircuit
D of M with e ∈C, we have by transitivity C \ e ≡M/e D\ e.

Let C ′ be a positive cocircuit of M with e 6∈ C ′. We prove the result for A = C ′.
Observe that C ′ is also a positive cocircuit of M/e and that −C ′M is bordered by e. For
the same property of the cocircuit graph as above, there exists a positive cocircuit D ′

in M modular with C ′ and such that e ∈ D ′. Using the above result we already have
C \ e ≡M/e D ′ \ e. Moreover C ′4D ′ is a positive cocircuit of −C ′M containing e, and
−C ′4D ′ −C ′ M =−D ′M is bordered by e. Using the above result this time in −C ′M, for
every positive cocircuit D of −C ′M with e ∈ D, we get that −D −C ′ M is bordered by e
and (C ′4D ′)\ e ≡−C ′M/e (D\ e). That is D ′ \ e ≡M/e C ′4(D\ e).

At last, we get the result for every A such that /0 ≡M/e A by transitivity in the equiv-
alence relation.

For A ⊆ E, we denote φ(A) = A\ e, and for A ⊆ 2E we denote φ(A) = {φ(A) | A ∈
A}. We denote F (M) the set of acyclic classes, or briefly classes, of M and R (M) the
set of acyclic reorientations of M.

Let F0 be the set of classes of M such that for any A of which class is in F0, −AM
is not bordered by e. Let R 0 be the set of acyclic reorientations of which class is in F0.
The definition of R 0 implies that the restriction of φ to R 0 is injective. We denote F ′

0
the particular classes in F (M \ e) which are images by φ of elements of F0.

Let F+ be the set of subsets of R (M) defined by A ∈ F+ when φ(A)∈ F (M/e) and
e 6∈A for every A∈A . Let R + ⊆R (M) be the union of elements of F+. Symmetrically,
let F− be the set of subsets of R (M) defined by A ∈ F− when φ(A) ∈ F (M/e) and
e ∈ A for every A ∈ A , and let R − ⊆ R (M) be the union of elements of F−.

Proposition 3.7. (i) The mapping φ induces a bijection between F0 and F ′
0 .

(ii) The mapping φ induces bijections between F+ and F (M/e), and between F− and
F (M/e).

Proof. (i) For every positive cocircuit C of a reorientation A ∈ R 0, we have C \ e
cocircuit of M \ e, otherwise there would be a cocircuit D of −AM with only negative
element e and −AM would be bordered by e. So C \ e is a positive cocircuit of the
acyclic reorientation A \ e of M \ e. Hence, for every A ⊆ R 0, by transitivity of the
equivalence relations, we have A ∈ F0 if and only if φ(A) ∈ F (M \ e).

(ii) Of course φ(R +) = φ(R −) = R (M/e). Moreover A ≡M/e B implies A4e ≡M
B4e, so every element in F+ ]F− has a non-empty intersection with exactly one class
of M and is contained in this class.

Let G = (F+ ]F−, E) be the bipartite graph of which set of vertices is F+ ]F−,
and of which set of edges E is defined by (A , B) ∈ E if and only if there exist A ∈ A
and B ∈ B with B = A4D for a cocircuit D with e ∈ D and positive in −AM.

Proposition 3.8. The connected components of G are either reduced to an isolated
vertex, or reduced to an edge. Moreover, there is a bijection between F (M) \F0 and
the connected components of G .

Proof. By Lemma 3.3, if A∈R +]R − then A 6≡M A4e. Let A∈R +. With Lemma 3.6
if there exists a positive cocircuit C of −AM containing e such that −C4AM is bordered
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by e, then for every positive cocircuit C of −AM containing e we have −C4AM bordered
by e. Hence we distinguish two cases depending on the fact that this property is true
(second case) or false (first case).

First Case. There exists a positive cocircuit C of −AM with e ∈ C and −C4AM not
bordered by e.

By Lemma 3.5, if D is a positive cocircuit of −A4CM containing e, then A ≡M/e
A4C4D. If D is a positive cocircuit of −A4CM not containing e, then let C ′ be a
positive cocircuit of −A4CM containing e and modular with D (it exists by connectivity
of the cocircuit graph of −A4CM ). Then C ′4D is a positive cocircuit of −A4C4C ′M
containing e. So, a possible sequence of reorientations from A to A4C4D using a
sequence of allowable reorientations is made by a sequence from A to A4C4C ′, which
is equivalent to a sequence in M/e by Lemma 3.5 as above, and at last the reorientation
with respect to the cocircuit C ′4D.

So, finally, a sequence of allowable reorientations beginning from the reorientation
A can always be replaced by a sequence of reorientations with respect to cocircuits
not containing e followed maybe by only one reorientation with respect to a cocircuit
containing e. If the final reorientation is bordered by e, then this last reorientation cannot
exist, otherwise, according to the distinction between two cases, the final reorientation
would satisfy the property of the second case, and so A would satisfy it too by Lemma
3.6. The same reasoning holds for A ∈ R −.

In conclusion: For A ∈ R + (A ∈ R −, respectively), in this first case, if A ≡M B and
B ∈ R + ]R − then B ∈ R + (B ∈ R −, respectively) and A ≡M/e B (A \ e ≡M/e B \ e,
respectively). That is A and B belong to the same element in F+ (F−, respectively). So,
in this first case, the class of A in M contains only one class in F+∪F−. In other words,
the corresponding vertex of the graph G is the only vertex of its connected component.

Second Case. There exists a positive cocircuit C of −AM with e ∈ C and −C4AM
bordered by e.

Then, by Lemma 3.6, for every B ≡M/e A and every positive cocircuit D of −BM
containing e, we have B4(D\e)≡M/e A4(C\e). Moreover, for every B≡M A we have
−BM bordered by e and B\ e ≡M/e A or B\ e ≡M/e A4(C \ e).

So, if A ≡M/e A4C \ e then the class of A in M contains exactly one class in F+ ∪
F−, that is the class of A in F+. And if A 6≡M/e A4C \ e then the class of A in M contains
exactly two classes in F+∪F−, that is the class of A in F+ and the class of A4C in F−.
In other words, in this case, the connected component in G of the corresponding vertex
is reduced to an edge joining two vertices.

Finally, we have built a bijection between F (M)\F0 and the connected components
of G .

Let G ′ = (F+]F−, E ′) be the bipartite graph of which set of vertices is F+ ]F−,
and of which set of edges E ′ is defined by (A , B) ∈ E if and only if there exist A ∈ A
and B ∈ B with either B = A4e or B = A4D for a cocircuit D with e ∈ D and positive
in −AM. This graph is obtained from G by adding edges between symmetric classes in
F+ and F−.

Proposition 3.9. There is a bijection between F (M\e)\F ′
0 and connected components

of G ′. Moreover, the connected components of G ′ are chains.
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Proof. By Lemma 3.4 and by transitivity in the equivalence relations, for every A, B ⊆
E, if A\e ≡M/e B\e then A\e ≡M\e B\e, and also for every A, B ⊆ E, if A ≡M B then
A \ e ≡M\e B \ e. Let A ∈ R + ]R −, let A be the class of A in M/e, let A+ = A and
A− be the set of B∪ e for B ∈ A . The class of A in M \ e contains A+ and A−. Hence
for A, B ⊆ R + ]R −, we have A\ e ≡M\e B\ e if and only if the classes of A and B in
F+]F− can be joined by a sequence of edges in the graph G ′. So we get the bijection.

Since a connected component of G is either reduced to a single vertex or to a single
edge by Proposition 3.8, then a connected component of G ′ is either a chain or a cycle.
Let A1 → A2 → ··· → A2k+1 be a path in a connected component of G ′, where no
vertex is repeated twice. The edges of this path are alternatively of type Ai+1 = Ai4e
and of type Ai+1 = Ai4D with D positive in −AiM containing e, for some Ai ∈ Ai and
Ai+1 ∈ Ai+1. Let Cre f =

(

C+
re f , C−

re f

)

be an arbitrary circuit of M with e ∈Cre f . It exists
since e is not an isthmus. This circuit will play the part of a reference for our following
counting. For A ⊆ E, we denote pos(A) the number of positive elements of −ACre f . By
the orthogonality property in regular oriented matroids, for A ⊆ E, C = −ACre f and D
positive cocircuit in −AM, we have |C+∩D |=|C−∩D |, and so pos(A4D) = pos(A).
Hence, for A ∈ F+ or A ∈ F−, we can define pos(A) = pos(A) for any A ∈ A . Let
1 ≤ i ≤ 2k. If Ai+1 = Ai4e and e is positive (negative, respectively) in −AiCre f then
pos(Ai+1) = pos(Ai)− 1

(

pos(Ai+1) = pos(Ai) + 1, respectively
)

. If Ai+1 = Ai4D
with D positive in −AiM containing e then pos(Ai+1) = pos(Ai). Hence, finally, the
sequence pos(A2i+1), 0 ≤ i ≤ k is either strictly decreasing or strictly increasing. And
so the connected component cannot contain a cycle: It is a chain.

Note that extremities of chains in G′ are exactly the connected components of G
reduced to a vertex (first type classes in proof of Proposition 3.8). We are now able to
enumerate classes.

Theorem 3.10. Let M be a regular oriented matroid.

(i) The number of acyclic classes for the cocircuit reversing system of M is t(M; 1, 0).
(ii) The number of totally cyclic classes for the circuit reversing system of M is

t(M; 0, 1).
(iii) The number of classes for the cocircuit reversing system of M is t(M; 1, 2).
(iv) The number of classes for the circuit reversing system of M is t(M; 2, 1).
(v) The number of classes for the circuit-cocircuit reversing system of M is t(M; 1, 1).

Proof. The main problem is to prove (i), it uses the previous propositions and lemmas.
The other assertions follow easily from duality and the convolution formula for the
Tutte polynomial.

(i) Let e be a fixed element of E. If e is a loop, then M has no acyclic reorientation. If
e is an isthmus, then e is a positive cocircuit in any reorientation of M and the number
of classes is 1 if E = {e} and the same as in M \ e otherwise. Assume now that e is
neither a loop nor an isthmus. It remains to prove that the number of classes equals
the number of classes of M/e plus the number of classes of M \ e. The result is then
deduced immediately with the inductive definition of the Tutte polynomial.

The number of the connected components of G being reduced to a vertex or an edge
(Proposition 3.8) equals the number of vertices minus the number of edges | F+ ]F− |
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− | E |. The connected components of G ′ being disjoint chains (Proposition 3.9) induce
disjoint chains on F+ and their number equals | F+ | − | E |. Hence the number of
connected components in G equals the number of connected components in G ′ plus the
number of vertices in F+. Using the bijections in Propositions 3.7, 3.8, and 3.9, we get

| F (M)\F0 |=| F (M \ e)\F ′
0 | + | F+ |,

and then

| F (M) |=| F (M \ e)\F ′
0 | + | F ′

0 | + | F+ |=| F (M \ e) | + | F (M/e) | .

(ii) By duality with (i).

(iii) The equivalence class of a totally cyclic reorientation is reduced to one element
for the cocircuit reversing system, since it has no positive cocircuit. So, thanks to
Proposition 3.1, two reorientations A and B are equivalent for the cocircuit reversing
system of M if and only if −AM and −BM have the same cyclic part F, A∩F = B∩F,
and A \F and B \F are equivalent for the cocircuit reversing system of M/F. So,
numerically, the number of classes of M for the cocircuit reversing system is

∑
F cyclic
flat of M

| F (M/F) | | R (M(F)∗) | = ∑
F cyclic
flat of M

t(M/F ; 1, 0)t(M(F); 0, 2)

= t(M; 1, 2),

using (i), the known enumeration of totally cyclic reorientations of M(F), and the con-
volution formula for the Tutte polynomial.

(iv) By duality with (iii).

(v) Thanks to Proposition 3.1, two reorientations A and B are equivalent for the circuit-
cocircuit reversing system of M if and only if −AM and −BM have the same cyclic
part F . Moreover, A∩F and B∩F are equivalent for the circuit reversing system of
M(F), and A \F and B \F are equivalent for the cocircuit reversing system of M/F .
So, numerically, the number of classes of M for the circuit-cocircuit reversing system is

∑
F cyclic
flat of M

| F (M/F) | | F (M(F)∗) | = ∑
F cyclic
flat of M

t(M/F ; 1, 0)t(M(F); 0, 1)

= t(M; 1, 1),

using (i), (ii), and the convolution formula for the Tutte polynomial.

Since regular matroids generalize digraphs, enumerative results on classes in [5,
Section 4] are corollaries of Theorem 3.10, and enumerative results on indegree se-
quences in [5, Section 3] are corollaries of Theorem 3.10 together with the bijections
between classes and indegree sequences in [5, Section 4].

Example 3.11. We consider the regular oriented matroid associated with the acyclic
directed graph M = K4 given in Figure 2. Acyclic reorientations of K4 correspond to
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Figure 2: The directed graph K4.
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Figure 3: The six acyclic classes of K4, first hemisphere.
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Figure 4: The six acyclic classes of K4, second hemisphere.

regions in the two opposite hemispheres of a pseudosphere arrangement represented on
Figures 3 and 4. In each region is written the corresponding maximal covector, with
standard notations. Recall that the evolution rule allows crossing a 0-dimensional face
and then take the opposite region. In the graph, it allows reversing the edges of a cocycle
(minimal cut).

The six acyclic classes are represented in Figures 3 and 4 in the following way: Two
white classes, two light grey classes and two dark grey classes, and, for each colour, one
of the two classes is represented with the corresponding digraphs drawn in the regions.
The reference element for the illustration of Propositions 3.7, 3.8, and 3.9 is e = 6.

The white regions are elements of R 0. There are two classes in F0, namely {3,
3456, 1234, 146} (these reorientations are represented with the corresponding digraphs)
and {235, 56, 12456, 12}. These regions and their decomposition into two classes are
unchanged when 6 is deleted, illustrating the bijection between F0 and F ′

0 .
The light grey and dark grey regions correspond to the two distinct classes in F (M\

e) \F ′
0 , and also in F (M/e). For each colour, the regions of which class is in F+

(that is, the region is bordered by 6 and 6 is positive) are represented with the digraph
drawn inside. The other are opposite with respect to 6. In this particular case, the
graph G is formed by four vertices and no edges. The graph G ′ is obtained by join-
ing two classes when they are symmetric with respect to 6, and so is formed by two
separate edges. More precisely the light grey classes in M are { /0, 2345, 124, 456} and
{6, 23456, 124, 23}, and they are joined by an edge in G ′ and correspond to the class
{ /0, 2345, 124, 456} in M/6 and the same in M \6. Similarly the dark grey classes are
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opposite to the light grey classes.
Note that the case where G has a non empty set of edges, and thus G ′ has non trivial

chains, appears in higher dimensions. Some examples can easily be built using graphs
with more than 5 vertices.
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